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Abstract
Field measurements in the atmospheric surface layer (ASL) are key to understanding turbulent
exchanges in the atmosphere, such as fluxes of mass, water vapor, and momentum. However,
current field measurement techniques are limited to single-point time series or large-scale flow
field scans. Extending image-based laboratory measurement techniques to field-relevant scales
is a promising route to more detailed atmospheric flow measurements, but this requires
significant increases in the attainable measurement volume while keeping the spatiotemporal
resolution high. Here, we present an adaptable particle tracking system using helium-filled soap
bubbles, mirrorless cameras, and high-power LEDs enabling volumetric ASL field
measurements. We conduct analyses pertinent to image-based field measurement systems and
develop general guidelines for their design. We validate the particle tracking system in a field
experiment. Single-point Eulerian velocity statistics are presented and compared to data from
concurrently operated sonic anemometers. Lagrangian displacement statistics are also presented
with a comparison to Taylor’s theory of dispersion. The system improves the state-of-the-art in
field measurements in the lower atmosphere and enables unprecedented insights into flow in
the ASL.

Keywords: turbulence, atmospheric surface layer, particle tracking

1. Introduction

Turbulent motions drive transport in the atmospheric surface
layer (ASL). Understanding this process is essential for applic-
ations such as numerical weather prediction [1], wind energy
optimization [2, 3], and insect olfactory search [4]. Laboratory
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experiments and numerical simulations of the ASL face signi-
ficant limitations because of the restricted range of scales that
can be achieved and the inability to replicate complex bound-
ary conditions. This makes field experiments invaluable [5].

Prevailing field measurement techniques are confined to
single-point time series employing sonic, cup, or hot-wire
anemometers, with a range of temporal resolutions. These
techniques are fundamental to current understanding of the
ASL but provide limited spatial resolution and information.
Large-scale flow field scans using lidar or sodar depend on
the reflectance properties of the medium and have a low
signal-to-noise ratio, obfuscating small-scale structure [5].
More broadly, the vast majority of existing measurements are
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Eulerian, despite the relevance of Lagrangian statistics for
passive scalars [6] and turbulence modeling [7]. Canopy lay-
ers are one exemplary system where Lagrangian field meas-
urements have lagged laboratory experiments [8]. Drawing on
advances in laboratory experimental techniques and previous
field experiments, we present a system for ASLmeasurements
based on three-dimensional (3D) tracking of helium-filled
soap bubbles, capable of providing Eulerian and Lagrangian
statistics over a broad range of scales.

Measurement techniques based on imaging tracer particles
offer high spatiotemporal resolution and are standard for
laboratory experiments (see [9, 10] for recent reviews).
However, they have been limited to small volumes (∼1m3)
and are impractical to scale up to field relevance. Field
experiments using image-based techniques have only recently
become viable, primarily enabled by flexible camera calibra-
tion techniques [11] and unconventional tracer particles [12].
Natural snowfall has been used as seeding particles to per-
form two-dimensional particle image velocimetry (PIV) on a
full-scale horizontal axis wind turbine [12] and the ASL [13].
PIV is based on correlating the motion of particles within an
interrogation window. A dense uniform seeding is required,
which is nearly impossible to artificially generate in the
field.

Lagrangian particle tracking (LPT) is an alternative
approach that follows individual tracer particles. LPT is suited
to field experiments because it is naturally extended to 3D,
and the seeding density can be sparse and non-uniform [10].
We note that particle tracking velocimetry (PTV) is a com-
monly used acronym for the same technique. We use the
more general descriptor LPT because we do not only report
velocity statistics. Recently, 3D LPT field experiments with
natural snowfall have been conducted to study snow-settling
dynamics [14]. Artificial snow has also been used to study the
wake of a vertical axis wind turbine [15]. Using natural snow-
fall is ingenious but experiments are contingent on favorable
weather conditions. Artificial snow may be deployed arbit-
rarily but the machines are bulky, and the particles exhibit
a broad distribution of properties, posing challenges in char-
acterizing tracing fidelity. Previous measurements with artifi-
cial snow have been confined to the mean flow [15]. In gen-
eral, the high settling velocity of snow particles (∼0.6ms−1

[12]) limits applications to velocimetry. Particles deviate
from the flow in the vertical direction, complicating inter-
pretations of vertical fluxes. Large (25 mm) air-filled soap
bubbles have also been used to study the ASL using LPT in a
4 m × 2 m × 2 m domain [16]. We build on this approach
by simultaneously increasing the measurement volume,
decreasing the particle size, and using neutrally buoyant
particles.

The remainder of the paper is organized as follows. In
section 2 the LPT system design is discussed, including hard-
ware and software. This includes camera sizing section 2.2,
tracer particle selection section 2.3, illumination section 2.4,
camera calibration section 2.5, and particle triangulation
(section 2.6. Evaluation of the system in a field experi-
ment is given in section 3. Concluding remarks are given in
section 4.

2. System design

2.1. System overview

The primary hardware components of the LPT system are
shown in figure 1. The flow is seeded with helium-filled soap
bubbles of diameter 8.0± 0.25 mm and illuminated by nine
500 W LED lamps with a beam angle of 120◦ (TYCOLIT
B0B3DPTXVX). The lights are powered by a 9 kW gas gener-
ator (Predator 59 206). Four mirrorless cameras (Canon EOS
R5) are placed around the 8 m × 8 m × 4 m measurement
volume and image the light scattered by the bubbles. Images
are captured at a resolution of 4096× 2094 pixels and a frame
rate of 120 Hz. Cameras are equipped with a variable focal
length lens (Canon RF 24-105 mm F4 L IS USM), typic-
ally operated at 30 mm. This yields a resolution of approx-
imately 0.7 mm per pixel in the center of the measurement
domain based on the pixel pitch of 4.4µm and a typical work-
ing distance of 10 m . The aperture is set to f# = 8. Each
camera is operated on battery power and records data to an
onboard 325 GB memory card (ProGrade CFexpress). At the
specified recording settings this allows up to 30 min of total
recording.

Subsequent sections delve into the system’s design. Each
section includes a brief analysis of the general design aspects
of image-based field measurement systems, accompanied by
a succinct set of guidelines when feasible. We emphasize that
field experiments invariably require flexibility due to inher-
ently variable conditions, often rendering the optimal design
infeasible or impractical. Therefore, having a guiding set of
principles and an understanding of system sensitivity to adjust-
ments is useful.

2.2. Camera sizing

Optical field experiments require cameras that can simul-
taneously image a large volume and resolve small scales.
Imaging a large range of scales requires a camera sensor
with many pixels. However, the flow must also be temporally
resolved. Data transfer rates limit the maximum frame rate of
high-resolution cameras. In high Reynolds number laboratory
experiments temporal resolution requirements are very strict
(e.g. 70 kHz [17]) because a large range of scales is forced
into a small volume. In the ASL the fastest timescales are
more modest. The Kolmogorov time scale is O(0.1 s) using air
at standard conditions and estimating the Kolmogorov length
scale to be O(1mm) [5]. Frame rates on the order of 100Hz
may be acceptable. Commercial mirrorless cameras are cap-
able of recording 4K resolution images at 120 Hz and greatly
reduce the complexity and cost of the experimental setup.
Images are recorded to onboard storage, cameras run on bat-
tery power, and the cameras are designed to operate in field
conditions.

2.3. Tracer particle selection and production

Conventional tracers for gas flows, like polystyrene spheres
and liquid droplets, are ∼1µm in diameter [18]. These small
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Figure 1. Schematic of the LPT system with primary hardware
components.

particles have high tracing fidelity but scatter insufficient light
for large volumes. A fundamental challenge in increasing
measurement volumes to ASL-relevant scales is the trade-
off between tracing fidelity and illumination. Larger particles
scatter more light but follow the flow less faithfully. In this
section, we analyze the relevant dynamics of inertial particles
and offer guidelines on particle selection.

2.3.1. Inertial particle dynamics. We begin by summarizing
previous results on inertial particle dynamics [19, 20] using
theMaxey–Riley equation [21], which predicts the motion of a
small spherical particle of density ρp, diameter dp, and velocity
Vp in a fluid of dynamic viscosity µ, density ρf and velocity
U. After introducing corrections for finite particle Reynolds
number, the force balance reads [19]

mp
dVp
dt

= 3πµdpϕ(Rep)(U−Vp)+
mf

2

(
DU
Dt

−
dVp
dt

)
+mf

DU
Dt

+ 3πµdp

ˆ t

0
K(t− τ)

d(U−Vp)
dτ

dτ

(1)

wheremp = πρpd3p/6 is the particle mass andmf = πρfd3p/6 is
the mass of an equivalent sized fluid element. The first term
on the right-hand side represents viscous (Stokes) drag on the
particle with a correction ϕ based on the particle Reynolds
number Rep. The second term is the added mass force for
a sphere [22]. The third term is due to local fluid stresses,
i.e. the force felt by a fluid element in an undisturbed flow. The
last term is the history force with a decaying memory kernel
K(t− τ). For a characteristic flow frequency ω dimensional
analysis suggests two critical parameters to predict the ratio
Vp/U, which quantifies the particle tracing fidelity: the Stokes
number St and the density ratio B

St=
mpω

3πµdp
B=

ρf
ρp

. (2)

Transfer function analysis shows how the influence of different
forces varies with St [19, 20, 23, 24]. Inserting Vp = V̂pe−iωt

and U= Ûe−iωt into equation (1) the ratio H= V̂p/Û can be
derived, which describes the attenuation, or amplification, of
fluid velocity fluctuations by the particle

Figure 2. Transfer function description of tracing fidelity for
different density ratios. Dashed lines are asymptotic limits from
equation (5). As St→∞ heavy particles attenuate velocity
fluctuations, and light particles amplify them.

H(St,B) =
2
3 +(1− i)

√
StB− iStB

2
3 +(1− i)

√
StB− iSt

(
2
3 +

1
3B
) (3)

where i =
√
−1. The asymptotic behavior of the history force

has been used, resulting in terms ∝ (1− i)
√
StB [19]. Finite

Rep corrections are neglected in the Stokes drag force for sim-
plicity since they do not change the asymptotic arguments
given.

At small St, |H(St→ 0,B)| → 1, implying perfect tracing
fidelity for very slow fluctuations. As St increases the particle
exhibits qualitatively different behavior depending on the
density ratio. For conventional gas flow tracers with StB≪ 1
the transfer function simplifies to

Hc (St) =
1

1− iSt
(4)

which describes a low-pass filter behavior where the particle
response decays at high excitation frequency, |Hc(St→
∞)| → 0. Stokes drag dominates the force balance, inducing
an acceleration that counters any differences in the particle
and fluid velocity. The particle dynamics are governed by a
relaxation time scale, responding to fluctuations slower than
the relaxation time and not responding to faster fluctuations.
For example, a liquid droplet in air has B≈ 10−3. The beha-
vior of such a particle is shown in figure 2, where the condition
St∼ 1 marks the decay of particle response.

The asymptotic behavior is fundamentally altered when
B≈ 1. At large St, the response approaches a finite limit gov-
erned only by the density ratio

H(St→∞,B)→ 3B
2+B

. (5)

The finite limit represents the influence of added mass and
fluid stress. Analogous to how the drag force induces an accel-
eration to reduce the slip velocity, added mass responds to
slip accelerations. The effect is potent at high St. Particles
with 0.93⩽ B⩽ 1.07 have 0.95⩽ |H(St→∞,B)|⩽ 1.05.
The approach to a limiting value is shown in figure 2 for
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Figure 3. (a) Bubble generator design. (b) Example shadowgraph image of bubbles. (c) Distribution of bubble diameters.

several values of B≈ 1. Since |H(St,B)| always increasingly
departs from 1 with increasing St the limit in equation (5) is a
conservative bound on the tracing fidelity. However, there are
some caveats.

2.3.2. Finite size effects. The limit in equation (5) would
suggest that particle response is independent of dp at high St,
conflicting with the intuitive idea that particles cannot respond
to fluctuations with characteristic scales smaller than their dia-
meter. The dp independence is a result of using equation (1),
which assumes a particle much smaller than any flow length
scale. For this assumption to hold dp/η < 1 is required, where
η is the Kolmogorov length scale. When dp/η > 1 previous
studies have shown that neutrally buoyant particles experi-
ence an acceleration that is averaged over scales smaller than
the diameter. Across experiments and simulations, the ratio of
particle to fluid acceleration variance against dp/η collapses on
a single curve for dp/η < 10 well predicted by an averaging
model [17, 25–28]. Arguments supporting a universal aver-
aging model stem from Kolmogorov’s similarity hypotheses
[25]. Transfer function analysis is complimentary, providing
physical insight into the responsible forces. In conclusion,
similar to conventional tracers described by a low pass filter
in time with a cut-off time scale based on the Stokes number,
finite-sized neutrally buoyant particles act as a low pass filter
in space with a cut-off scale dp.

The importance of averaging over the smallest scales
depends on the quantity one wants to measure. For viscous
scale phenomena, like fluid particle accelerations, small-scale
averaging has a noticeable impact [17]. However, in the ASL
focus frequently lies on low-order statistics of single-point
velocity fluctuations, which are governed by the largest tur-
bulent scales [29]. Indeed, sonic anemometers are the stand-
ard for ASL measurements and average over a path length
of ∼10 cm [30]. In our experiments, to balance finite-size
effects with illumination requirements we target dp/η ⩽ 10
while maintaining 0.93⩽ B⩽ 1.07.

2.3.3. Tracer production. To meet these requirements we
use helium-filled soap bubbles (HFSBs). HFSBs have been
used extensively in wind tunnels [31–33] and have several
attractive qualities for field experiments. Particle properties
can be tuned, the environmental impact is limited to trace
amounts of soap solution, and the production hardware is reas-
onably portable. Knowing that η is O(1 mm) in the ASL, an
HFSB generator was designed to produce diameters between
5 and 10mm. A section view of the generator design is
shown in figure 3(a). The design draws from [34], with two
primary components: a nozzle that produces concentric flows
of helium and soap solution, and an interchangeable cap that
directs air to the exit orifice. The physical mechanism under-
lying HFSB production has recently been explained via the
Rayleigh-Plateau instability [35]. HFSB generator compon-
ents were manufactured using a 3D resin printer (Form Labs
V2). Printable files of the generator parts are available in the
Supplemental Material.

We inject helium via a 14-gauge syringe that runs through
the entire nozzle. Stainless steel inserts are used for attaching
tubing to the gas ports. By using different caps and controlling
the flow rates of helium, bubble solution, and air the HFSB
properties can be manipulated. Gas flow rates into the nozzle
are controlled by flow controllers for air (Omega FMA5527A)
and helium (Omega FMA5520A). Helium is drawn from a
552 L gas cylinder (Grainger 29YF75) and air is supplied by
a 30.3 L compressor (Husky 1002-714-648). Gas pressures
are reduced via a regulator and passed through 40 µm partic-
ulate filters. The bubble solution contains concentrated soap
(JOYIN J-BCS1) and water with a 10% by volume ratio. The
bubble solution flow rate is controlled with a syringe pump
(Just Infusion NE-300).

The bubble diameter was designed around the criterion
dp/η ⩽ 10 and ease of particle identification in camera images.
The latter requirement is discussed in the next section. A target
bubble diameter of 8mm was selected. The bubble diameter
distribution was measured by shadowgraphy (figure 3(b))
and is shown in figure 3(c). The mean diameter is ⟨dp⟩=
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8.0mm and the standard deviation is σdp = 0.25mm. The ratio
σdp/⟨dp⟩ ≈ 3% is comparable to previous HFSB generator
designs [34, 36], indicating reasonable uniformity of bubble
size. The production rate of the generator measured by high-
speed video is Ṅ= 88 bubbles per second. Near neutral buoy-
ancy is achieved by the appropriate specification of helium
(ṁHe) and soap solution (ṁS) mass flow rates [36]. Equating
input mass flow to the bubble outflow,

ṁHe + ṁS =
π

6
ρpd

3
pṄ. (6)

Mass flow rates were specified as ṁHe = 0.028g s−1 and
ṁS = 0.0032g s−1, which yields B≈ 0.94 at relevant field
conditions.

2.3.4. Bubble breakup. We note that soap bubbles could
potentially be broken up by turbulent fluctuations, invalidat-
ing the rigid sphere assumption used in the analysis of particle
dynamics. The Weber number quantifies the relative strength
of deforming turbulent fluctuations to restoring surface ten-
sion forces. For a particle with a diameter greater than the
Kolmogorov scale the Weber number can be written as [37]

We=
ρf (εdp)

2/3 dp
γ

(7)

where ε is the dissipation rate of turbulent kinetic energy and γ
is the surface tension. Estimating the Kolmogorov length scale
as O(1mm), using air at standard conditions, and a surface ten-
sion of 30mN m−1 [38] the Weber number is O(10−4). This
is well within the regime where a rigid sphere assumption is
valid [37].

2.4. Illumination and particle identification

To ensure that particles can be reliably identified in camera
images, they should be bright and several pixels in diameter
when imaged. A particle at location xp being illuminated by
a continuous, non-collimated spherical light source of power
P at a location xL produces a mean exposure ϵ̄ on a camera
sensor at location xc that can be approximated by [18]

ϵ̄∼
(

Pδte
||xp − xL||2

)(
d2p

d2I + d2τ

)(
f 2

||xp − xc||2f 2#

)
(8)

where δte is the camera exposure time, f is the camera focal
length, dI is the geometric particle image diameter, and dτ
is the diffraction spot size. The scattering regime is assumed
to be geometric [18]. We analyze this equation intending to
optimize illumination, particle characteristics, and camera set-
tings under the constraints of field experiments. A compli-
mentary analysis for laboratory experiments has recently been
given [35].

A significant challenge to optical field experiments is lim-
ited access to electrical power for illumination, an issue

exacerbated by large measurement volumes. The first par-
entheses in equation (8) represent the intensity of light at
the particle location. To minimize the required light power,
particles must be close to the illumination source. This sug-
gests placing a light source directly adjacent to the meas-
urement domain. Such a placement necessitates a very large
beam angle. Even if such a wide angle were feasible much
of the light would illuminate regions outside the measure-
ment domain. A more directed approach is to use multiple
light sources with a narrower beam angle. Using continuous
light sources is simpler than synchronizing the camera array
to pulsed light sources. While pulsed sources would signi-
ficantly reduce the total illumination energy, the peak power
would not change, which is the primary limiting factor in field
experiments.

The second set of parentheses in the mean exposure
equation describes the influence of the physical particle dia-
meter and the particle image size. In the numerator, d2p
accounts for an increase in scattered light with particle size.
The denominator is the total imaged particle diameter on the
camera sensor (squared), with contributions from geometric
dI and the diffraction effects dτ . Increasing the particle image
diameter spreads light over a larger area, resulting in a lower
mean exposure. For conventional tracers imaged with mag-
nification M we have dI =Mdp so that the mean exposure
becomes independent of the particle diameter for very large
particles (Mdp ≫ dτ ) [39]. Eventually, increases in scattered
light are counteracted by the enlarged image diameter. Soap
bubbles exhibit slightly more complex light-scattering prop-
erties but a similar principle holds. Light entering and exit-
ing the soap film is partially reflected, leading to pairs of
high-intensity lobes, often referred to as ‘glare points.’ At a
viewing angle of 90 deg the distance between glare points
on the camera sensor is dg =M

√
2dp/2 [40]. Two imaging

regimes are present. When dg ≪ dτ the particle image is dif-
fraction dominated and the intensity distribution has a single
peak. Conversely, when dτ ≪ dg pairs of glare points give rise
to an intensity distribution with multiple peaks. Multi-modal
intensity distributionsmake particle identification difficult. On
the other hand, the diffraction-dominated regime (dg ≪ dτ )
requires small particles or large f#, which both decrease the
mean exposure. To maximize the mean exposure without pro-
ducing a multi-modal distribution we target

dτ = dg. (9)

Matching the diffraction spot size to the glare point spacing,
i.e. equation (9), throughout the entire measurement domain is
often infeasible. For M≪ 1 the diffraction spot size is nearly
independent of M so dg/dτ ∝M. Particles closer to the cam-
era have more distinct glare points and particles further away
are increasingly diffraction-dominated. Weak deviations from
equation (9) can be compensated in post-processing, provided
the particles remain bright enough to be identified. An inability
to identify particles, because they are too dim, would be cata-
strophic for effective particle tracking, so we err on the side
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Figure 4. Particle identification procedure to associate one particle with each set of glare points. Left shows an image after pre-processing.
The right shows a zoomed-in view detailing the particle-finding procedure. Particles with a single peak use a standard Gaussian peak fit.
Particles with multiple peaks are identified with an intensity-weighted average.

of observing glare points, with some extra logic in the particle
identification algorithm.

The last set of parentheses in equation (8) is the square of
the ratio of the physical aperture area to the distance from the
camera to the particle. It suggests using short working dis-
tances and a large aperture (small f#) to maximize the bright-
ness of observed particles. The working distance and focal
length are primarily dictated by the scale resolution require-
ments discussed in section 2.2. The f# should be specified tak-
ing into account depth of field requirements, diffraction spot
size, and brightness of particle images.

In our experiments the final choice of f# = 8 was determ-
ined by imaging particles in field-representative conditions.
Depth of field was assessed by moving a 25mm checker-
board calibration target throughout the measurement domain
and checking that edges remained clear. Diffraction spot size
and particle brightness were assessed directly from images.
Various formulas relating the diffraction spot size and depth
of field to f# for monochromatic light sources can be found in
the literature (e.g. [18]). These are useful for initial estimates
but assessment under field-representative imaging conditions
is advised. Ultimately, the goal of the illumination and optical
setup is to ensure that particles can be reliably identified in
camera images.

An example image from field experiments is shown in
figure 4 after pre-processing, including background subtrac-
tion, masking of light sources, and median filtering. The
image is cropped because the camera field of view is larger
than the measurement domain to minimize edge distortions.
Contrast has been enhanced for illustration. Particles should be
much brighter than the background for easy identification. The
observed bubble intensity is 35± 10 counts while the noise
from particulate in the air is 1± 1 counts after pre-processing,
suggesting that image signal-to-noise ratios are generally large
enough to identify particles. Particle centers are first identi-
fied with a standard Gaussian peak fitting [41]. The results

are shown in a zoomed-in view in figure 4. Some particles
show multiple maxima, a sign of glare points, and thus that
equation (9) is qualitatively applicable. To identify the particle
center the position is computed as an intensity-weighted aver-
age when adjacent peaks are closer than one bubble diameter.
Sparse seeding makes the distinction between glare point pairs
and separate particles unambiguous, as shown in figure 4.
Reconstruction of the 3D particle point cloud from image
particle centers can then be performed with an appropriate
camera calibration.

2.5. Camera calibration and synchronization

Calibrating cameras in field experiments poses challenges as
the precisemeasurement of a calibration target’s position is not
feasible. Unlike typical laboratory calibration schemes requir-
ing known target positions, field studies employ an unstruc-
tured approach, determining camera parameters from images
of a calibration object at arbitrary positions. Calibration
schemes using a checkerboard target [42] and calibrationwand
[11] have been developed. In volumetric calibrations, wand
techniques offer the advantage of arbitrary target viewing
angles, requiring identification only of the wand endpoints. In
contrast, checkerboard-style calibrations require all cameras to
capture a target plane, which is infeasible for camera arrange-
ments with large angular separation. We perform a wand wave
calibration using a 0.653m long PVC pipe. Calibration videos
are recorded where the wand is waved throughout the meas-
urement domain by hand. Camera models are fit from identi-
fied wand endpoints using the easyWand tool from [11]. A
Direct Linear Transform (DLT) model is used, with no distor-
tion corrections.

Camera synchronization is performed with a dual hardware
and optical approach. Hardware synchronization is performed
using a trigger box (ESPR), which is intended to simultan-
eously trigger all the cameras. In practice we find cameras are
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offset by up to 10 frames. Therefore, a refined synchronization
is performed in post-processing using a multicolored blink-
ing light in the measurement domain. One camera is set as the
primary and the blinking signal from each camera is cross-
correlated to find the frame offset that maximizes the cross-
correlation. A detailed description of camera synchronization
is given in appendix A.

2.6. Triangulation and tracking

For every identified particle in camera images, a 3D ray
emanating from the camera can be associated using the DLT
equations. By searching for rays that nearly intersect, particle
positions in 3D space can be identified. The open-source
implementation (4D-PTV) of the ray traversal algorithm from
[43] is used to triangulate particles from sets of camera rays.
Rays are moved through a discretized digital measurement
domain. Voxels with multiple ray traversals are candidates for
particle locations. Particle candidate quality is determined by
how many rays traverse their voxel of interest and how close
the rays are to intersecting. More rays at a voxel indicate that
more cameras agree that a particle could be at that location and
near intersections indicate close agreement in particle position
across cameras. We require a minimum of 3 rays to intersect
a voxel for triangulation and the maximum distance between
rays is 7mm. The ray traversal approach was selected because
it is objective, computationally efficient, and flexible. Simpler
approaches to triangulation using epipolar geometry are tied to
the ordering of cameras and identified particles, making them
non-objective [43]. More sophisticated triangulation routines
based on tomographic principles, such as Shake the Box (STB)
[44], are optimized for higher seeding density.

The output of the triangulation routine is a 3D point cloud
of particles in each frame. Particles are subsequently tracked
to obtain Lagrangian trajectories. Each track is initiated with
a nearest-neighbor approach and subsequent frames use a 2-
frame kinematic prediction [41]. The prediction assumes neg-
ligible acceleration to predict particle positions in the next
frame. Tracks are continued by finding the particle in the
next frame which is closest to the predicted position, within a
maximum distance of 10cm. Velocities are computed by con-
volving trajectories with a Gaussian kernel [45]. The convolu-
tion filter width is always smaller than the smallest time scale
in the flow by a factor of 3 so attenuation of small-scale fea-
tures by temporal filtering is negligible [46].

3. Field evaluation

3.1. Experimental setup and ambient conditions

A field campaign was conducted in early October 2023 at
Island Beach State Park in New Jersey, USA to evaluate the
LPT system. The field site is on a narrow strip of land between
the Atlantic Ocean and the continental USA. Satellite imagery
of the experiment location is shown in figure 5(a). Experiments
were conducted at the southern tip of the park. An aerial photo

of the experiment site is shown in figure 5(b). The beach site is
adjacent to the ocean, approximately 10m from the waterline.
The measurement domain was positioned on the beach about
1.5m above sea level to avoid rising tides. The terrain close
to the site is relatively flat with small undulations in the sand.
Larger dunes and vegetation are present 300m to the east.

The setup of the experiment is shown in figure 6(a). Upon
arrival at the beach, a tower was erected with two sonic
anemometers (Campbell CSAT3) at z= 0.89m and z= 1.9m
sampling at 20Hz. The measurement domain extent was
marked by flags and the illumination LEDs were positioned in
a 3 × 3 grid with a 2m spacing. The synchronizing LED was
attached to a vertical stake in the center of the measurement
domain. Cameras were placed along a 90◦ arc with a 10m
working distance to the center of the measurement domain.
The bubble generator was placed on a stand approximately
14m upstream from the center of the measurement domain.
Figure 1 is a schematic of the setup during field experiments.
Aligning the bubble trajectories to the center of the domain
required occasional repositioning. This can be observed in
figure 6(a) where the HFSB plume is not centered on the meas-
urement domain. The HFSB generator was run for several
minutes before data collection to avoid inconsistent produc-
tion during start-up. The entire system was assembled and dis-
mantled during each evening of the field campaign, emphasiz-
ing its flexibility to be deployed at arbitrary locations.

Weather conditions during data collection are shown in
figures 6(b)–(d) using a five-minute moving average on sonic
anemometer time series including the mean wind speed U,
the wind direction θ, and the sonic temperature T. A ten-
minute window of bubble recordings is selected when ambi-
ent conditions are relatively stable, indicated by the blue rect-
angle in figure 6. Mean wind speeds during this period were
2.14ms−1 at the lower sonic (z= 0.89m) and 2.47ms−1 at the
upper sonic (z= 1.9m). Relevant turbulence scales computed
by sonic anemometers are shown in table 1 with comparison
to the characteristic scales of the LPT system. Generally, the
flow is well resolved in time, but the finite size of the particles
and positional noise limit the smallest length scales resolved.
Closer to the surface η decreases and these effects are increas-
ingly relevant.

3.2. Triangulation and tracking statistics

Particle positions are extracted from the camera images and
subsequently triangulated and tracked. Tracks shorter than 17
frames are discarded, based on the minimum convolution fit
window of 12 frames and an imposed minimum track length
of 5 frames after convolution. The total number of particles
that are successfully triangulated and tracked is 7 732 681 with
98% falling within the designated 8m × 8m × 4m measure-
ment domain. The number of trajectories is 83 358. Example
HFSB trajectories are shown in figure 7(a) colored by speed.
The coordinate system has been rotated so that x is the stream-
wise direction, y is the spanwise direction, and z is the vertical.
There is noise present in the velocity estimates, which can be
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Figure 5. Images of the field campaign location. (a) Satellite imagery of the field campaign location showing surrounding geography. (b)
Aerial photo of the experiment location on 9 October 2023 with mean wind direction during bubble data collection indicated.

Figure 6. (a) Photograph of field-experiment setup, viewed upwind from the HFSB generator. A schematic of the setup is shown in
figures 1(b)–(d) Time series of sonic anemometer data at two different heights above the surface. A five-minute moving average is applied.
The blue rectangle indicates the period of bubble data collection. Wind direction θ is measured clockwise from north, as indicated in
figure 5(b).

Table 1. table of turbulent and LPT scales. Kolmogorov scales are estimated using the second-order structure function from sonic
anemometer time series, converted to spatial increments using Taylor’s hypothesis. The friction velocity is estimated by assuming a constant
stress layer, e.g. uτ =

√
|⟨uw⟩|. Here ∆tc is the time step between camera frames, ||ex|| is the position uncertainty magnitude and ||eu|| is

the velocity uncertainty magnitude. See appendix B for uncertainty estimation.

Height (m) τη (s) η (mm) uτ (m/s) ∆tc/τη dp/η ||ex||/η ||eu||/uτ

0.89 0.050 0.85 0.13 0.17 9.4 4.5 0.80
1.93 0.090 1.1 0.12 0.09 7.0 3.5 0.86

observed from occasional spikes in the speed. We find these
are coincident with changes in the observed intensity distribu-
tion for a particle. When the intensity distribution shifts from
single peak to multi-modal the identified particle position is
slightly perturbed. The uncertainty in the velocity estimate due
to uncertainties in particle positions is detailed in appendix B
based on a statistical analysis.

The track length histogram is shown in figure 7(b).
Generally, the number of tracks decreases with increasing
track length as any failure in the particle identification, trian-
gulation, or tracking procedure results in a truncated traject-
ory. The rate at which the histogram decays is an indicator
of the probability of connecting tracks in a subsequent frame.
Approximately exponential behavior from 100 to 400 frames
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Figure 7. Example trajectories and track length distribution. (a) Fifty longest trajectories colored by speed. The x axis is aligned with the
mean velocity and z with vertical. (b) Track length distribution in frames. Inset shows track length normalized by domain residence time,
which limits the longest trajectories.

Figure 8. First and second order wall normal single point statistics. Shading indicates uncertainty for the LPT system.

indicates a constant failure rate. The tail of the distribution is
limited by the particle residence time in the domain. An inset
in figure 7(b) shows a log-log plot of the track length histo-
gram. Track duration td is normalized by the domain residence
time tr. Residence time is estimated as the domain side length
divided by the mean velocity. As the track length approaches
the residence time, the histogram decays rapidly. Since long
trajectories are crucial to Lagrangian statistics, this analysis
shows how the domain can be sized for studying a desired
range of Lagrangian time scales.

3.3. Wall-normal Eulerian statistics

Conventional ASL measurement techniques provide single-
point Eulerian statistics. The LPT system provides a sparse
snapshot of the flow field at every time instant, but the
positions where the velocity is being measured are rarely
sampled multiple times. By assuming the flow is statistic-
ally homogeneous and stationary, single-point statistics can be

estimated, and compared to those derived from sonic anemo-
meter measurements. Such a comparison is shown in figure 8.
Wall-normal statistics are computed under the assumption that
the flow is statistically homogeneous in the horizontal direc-
tions and stationary in time. A Gaussian weighted average is
used to perform this conversion with points spaced logarith-
mically from the surface. Details on the conversion can be
found in appendix C.

Wall-normal statistics in figure 8 are normalized by ‘inner’
scales. The friction velocity uτ is estimated by assuming a con-
stant stress layer. The friction velocity from LPT data is used
to normalize both the sonic and LPT data. Shading indicates
uncertainty based on the analysis in appendix B for the LPT
system. Uncertainty in sonic anemometer statistics are estim-
ated using the filtering method [47].

Measurements of the mean streamwise velocity in
figure 8(a), streamwise standard deviation in figure 8(c),
and spanwise standard deviation in figure 8(d) agree
within the estimated uncertainty. Measurements of the
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Figure 9. Probability distributions of velocity fluctuations from sonic (lines) and LPT system (markers) at two heights. (a)–(c) z= 0.89
(d)–(f) z= 1.93m.

streamwise-vertical Reynolds stress in figure 8(b) and vertical
velocity standard deviation in figure 8(e) are also consistent
between the sonics and LPT system. However, there is a slight
bias in the sonic measurements to lower magnitude values.
This is plausibly attributed to path averaging, as the path
length of the sonic anemometer is 10cm, an order of mag-
nitude larger than the bubble diameter. Energy-containing
scales of vertical motions are expected to be smaller than the
streamwise and spanwise directions because of the presence
of the surface.

In figure 9, we show the probability distributions of velo-
city fluctuations measured by the sonic anemometers and the
LPT system. All LPT velocity measurements within ±0.2m
of the sonic heights are used to compute the distributions.
For the streamwise (u) and spanwise (v) components excel-
lent agreement is observed out to events with probability 10−4.
Measurements of low-probability events are limited by the
number of observations. By averaging over horizontal planes
the LPT system obtains approximately two orders of mag-
nitude more observations than the sonic anemometers in the
same time window, allowing estimation of events with very
low probability. Even if low-probability events are not of
interest, the statistical convergence is generally improved by
more measurements. For example, the LPT-measured distribu-
tions vary smoothly up to probability 10−4 whereas the sonic
distributions show clear signs of noise, e.g. in the right flank of
figure 9(a). The LPT-measured vertical velocity (w) distribu-
tion is broader than the sonic-measured distribution, consistent
with the difference in variance observed in figure 8(e). Thus
the sonic and LPT comparisons generally validate the LPT sys-
tem for Eulerian measurements, with small differences attrib-
uted to path averaging by the sonic anemometers.

3.4. Dispersion statistics

The Lagrangian view is natural for problems involving the
spread of a passive tracer in the ASL [6]. Neglectingmolecular

diffusion, concentration is conserved along Lagrangian
particle trajectories. To investigate this in the present data
set displacement statistics from trajectories 1± 0.2 m above
the ground are studied. The displacements mimic the spread of
a passive scalar point source under the assumptions of station-
ary and homogeneity over the horizontal slice of the measure-
ment domain. The assumption of homogeneity over heights
of 1± 0.2m is supported by the Eulerian statistics in the pre-
vious section. The mean velocity change over this vertical
window is approximately 5.5% and changes in second-order
statistics are less than 3%. Then, under the assumptions given,
the probability distribution of displacements is proportional
to the mean concentration distribution [48]. This is illustrated
by the trajectories in figure 10(a).

Measurements of displacement statistics also highlight the
range of scales resolved by the LPT system. Consider the
displacement variances shown in figure 10(b). Measured dis-
placement fluctuations are compared to Taylor’s theory of dis-
persion for homogeneous stationary turbulence [49], with the
early-time prediction shown in solid lines. At early times the
displacement variances are predicted to grow ballistically, e.g.
σ2
x = σ2

u∆t
2 for the streamwise direction. Displacement vari-

ances measured by the LPT system are larger than the pre-
diction at short times because of positional noise, which has
a non-negligible contribution to displacement fluctuations at
very short times. As ∆t increases the displacement fluctu-
ations of fluid particles increase, thereby increasing the signal-
to-noise ratio. The onset of measured ballistic scaling is con-
sistent with the uncertainty analysis in appendix B. Positional
uncertainties are approximately 3mm and the approach to bal-
listic scaling occurs when displacement fluctuations exceed
approximately 10mm. Regardless of positional noise, scales
smaller than the 8mm particle diameter are not resolved due
to finite-size effects. Nearly a decade of ballistic scaling is
observed, emphasizing the ability of the LPT system to char-
acterize small-scale statistics. As ∆t further increases velo-
city fluctuations lose correlation and the displacement variance
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Figure 10. Dispersion results from field experiments for trajectories at z0 = 1m above the surface. (a) 1000 trajectories translated to a
common origin and colored by time along the trajectory. (b) Measured mean squared displacements as a function of time difference
(symbols). Solid lines are the short-time ballistic prediction. Curves for each component are shifted vertically for clarity. Gray points are
contaminated by noise.

growth slows down. Measurements of this behavior are key to
stochastic Lagrangian models, but current data are limited [6,
50]. The ability of the presented system to provide Lagrangian
field measurements across a broad range of scales paramount
to dispersion modeling is unprecedented.

4. Discussion and conclusion

We have presented a novel particle tracking system for meas-
urements of Eulerian and Lagrangian statistics in the atmo-
sphere. The system has been designed around the unique con-
straints of field experiments in the ASL. A balance is sought
between flexibility, ease of use, and measurement accuracy.
The system uses commercially available mirrorless cameras
sampling at 4 K resolution and 120Hz frame rate, 8mm
HFSBs and nine 500W LEDs. Analysis relevant to the sys-
tem design is presented, offering guidelines on image-based
field measurements.

The system was evaluated in a field experiment where
Eulerian and Lagrangian statistics were computed. Eulerian
wall-normal statistics showed favorable comparisons to sonic
anemometers in both mean velocities and fluctuations.
Lagrangian dispersion statistics were assessed from particle
tracks. Measured displacement fluctuations support Taylor’s
theory of dispersion [49] at early times. This early-time bal-
listic scaling is precisely the behavior that cannot be captured
by eddy diffusivity closures [51], warranting further investig-
ations of Lagrangian statistics in the ASL.
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Appendix A. Camera synchronization

This section describes the procedure to synchronize cam-
eras using a multicolor light in the center of the measure-
ment domain. The light color oscillates between blue, red, and
green. Each color is held constant for approximately 0.17s.
The synchronizing light is visible to each camera, as shown in
figure 6(a). Intensity time series of the synchronizing light are
extracted from each camera by cropping the image around the
light and summing the pixels. An example intensity time series
is shown in figure A1(a). The light begins blue, switches to
red, and then to green. A difference in the color switch timing
between camera 1 and camera 2 can be seen. This difference
implies a time offset between the two cameras. To quantify this
offset the correlation coefficient between the intensity signal
from each camera is computed at different time lags. The cor-
relation coefficient computed by shifting the second camera’s
intensity signal is shown in figure A1(b). There is a clear peak
at -4 frames in each color channel, indicating a 4 frame offset
between the two cameras. An offset is computed this way for
each camera and used to align the videos from different cam-
eras. The offset calculation is done at the beginning and end of
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Figure A1. Illustration of synchronizing method. Colors correspond to the different color channels recorded by the camera (red, green, and
blue). (a) Time series of intensity fluctuations in arbitrary units. The second camera time series (Cam 2) is shifted vertically for clarity. (b)
Correlation coefficient between intensity from the first and second camera as a function of the second camera time shift. The vertical line is
the estimated offset.

each video to test for any drift throughout the video. We find
no drift.

The cross-correlation analysis described above can only
synchronize the cameras within one frame. Smaller temporal
misalignments cannot be detected. Residual lack of synchron-
ization contributes to uncertainty in the triangulated particle
positions. As discussed in section 2.6, particles are triangu-
lated by matching the rays emanating from each camera. A
lack of synchronizationwill increase the distance between rays
that nominally intersect. The rays from one camera may be
associated with the particle positions in the near past or future,
relative to the other cameras. Since the triangulated particle
positions are computed as the midpoint of nearly intersect-
ing rays, the errors introduced by a lack of synchronization
will manifest in reprojection errors, i.e. the rays from differ-
ent cameras will not exactly intersect the particle position.
Therefore the uncertainty introduced by any lack of synchron-
ization is captured in the uncertainty analysis of appendix B.

Appendix B. Uncertainty analysis

This section describes the uncertainty analysis using variance
propagation for the system based on a combination of cal-
ibration and particle reprojection errors introduced in [53].
These effects are combined to yield a 2D positional uncer-
tainty in each camera. The 2D uncertainty is propagated to
a 3D positional uncertainty by linearizing the camera calib-
ration equations around 3D points, forming a matrix equation
that couples the four camera calibrations [53].

The calibration for each camera provides a map from 3D
position x to 2D camera coordinate X (in pixels) based on a
set of calibration parameters a, written as

X= F(x,a) . (B.1)

Uncertainties are assessed by linearizing the mapping func-
tion about the triangulated particle positions and fit calibration
parameters. For small randomperturbations to camera position
δX and camera calibration parameters δa there is a resulting

perturbation to the 3D position δx that we want to know. In
Cartesian tensor notation, and using Einstein summation con-
vention, equation (B.1) can be written as

δXi =
∂Fi
∂xj

δxj+
∂Fi
∂aj

δaj. (B.2)

Multiplying both sides of this equation by δXk and averaging
leads to an equation relating system co-variances

⟨δXi δXk⟩+
∂Fi
∂aj

⟨δajδal⟩
∂Fk
∂al

=
∂Fi
∂xj

⟨δxjδxl⟩
∂Fk
∂xl

. (B.3)

Correlations between the calibration errors and 2D position
errors have been neglected. In equation (B.3) the indices i and
k each run from 1 to 2. The same equation can be written for all
nc cameras, leading to a matrix equation of size 2nc× 2nc [53],
that can be solved for 3D position covariances if the calibration
uncertainty and 2D position uncertainty are known.

Calibration and 2D particle uncertainty are estimated using
reprojection errors. 3D points are triangulated from 2D loc-
ations using the algorithm discussed in section 2.6. Identified
3D points aremapped back to the camera using B.1. The repro-
jection error, measured in pixels, is the difference between
the mapped and the initially identified point. Using the iden-
tified wand endpoints from the calibration gives a typical cal-
ibration reprojection error for each camera that is approxim-
ately 0.5 pixels. Particle identification, residual lack of syn-
chronization, and triangulation also introduce errors, quanti-
fied with reprojection errors. Histograms of particle reprojec-
tion errors are shown in figures B1(a)–(d). Particle reprojec-
tion errors generally make a larger contribution to the total
2D uncertainty than the calibration. Particle reprojection vari-
ances are summed with the calibration uncertainty for each
camera and propagated via equation (B.3) to yield a 3D pos-
itional uncertainty at each triangulated point. The PDFs of
3D positional uncertainties in each direction are shown in
figure B1. Here z is the vertical coordinate and x,y are the
horizontal coordinates. Average uncertainties in each direction
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Figure B1. Uncertainty analysis. 2D reprojection errors in (a)–(d) are combined with the calibration reprojection uncertainty and
propagated to 3D position uncertainties (e) by linearizing the calibration equations.

are ex = 2.8mm, ey = 2.2mm, and ez = 1.4mm. Uncertainties
have not been reported in most previous field LPT experi-
ments, but [16] reports a 10mm uncertainty from the calibra-
tion alone. Velocity uncertainty is determined by creating arti-
ficial trajectories with a known velocity, introducing Gaussian
3D positional errors according to the previous analysis, and
comparing the noisy estimated velocity to the known velo-
city. The results are velocity uncertainties of eu = 7.5cms−1,
ev = 6.0cms−1, and ew = 3.9cms−1.

Appendix C. Lagrangian to Eulerian conversion:
single-point statistics

Differentiation of the particle tracks produces an unstruc-
tured grid of velocity measurements at each time step. To
make comparisons to conventional Eulerian measurements,
which are taken at a fixed location, the velocity measurements
from particle tracks are binned and averaged using a Gaussian
weight function [36, 54]. This approach has the added bene-
fit of improving statistical convergence [54]. For each point,
p where Eulerian statistics are desired a bin is drawn. The bin
Bp is a rectangular prism centered on pwith half-widths δx, δy,
and δz in the three coordinate directions. The desired statist-
ics are computed as a weighted average for all measurements
within Bp. Each p has an associated Gaussian weight function
wp(x) : R3 → [0,1] defined by

wp (x) =

{
exp
(
−(x−p)TC−1 (x−p)

)
x ∈ Bp

0 x /∈ Bp
(C.1)

where C ∈ R3×3 is a diagonal matrix. The values of C are set
by forcing the weight function to achieve a particular value on

the bin boundary. For example, the first element of C on the
main diagonal is set by requiringwp(p+ δx̂i) = cx. Here î is the
unit vector aligned with the x axis and cx is a constant between
0 and 1 that specifies how quickly the weight function decays
away from the bin center in the î direction. The lower the value
of cx the faster the decay. The same procedure is used to set the
weight function decay in other coordinate system directions
using the widths δy and δz and the constants cy and cz.

Average quantities at the desired points can be computed
for a set of particle trajectories and specified weight func-
tions. This involves averaging measurements of the instant-
aneous velocity U(x, t) from particle tracks. The two primary
quantities of interest are the mean velocity ⟨U⟩(x) and the
Reynolds stress tensor ⟨uu⟩(x). The Reynolds stress tensor
is composed of the variances and covariances of the velocity
fluctuations u= U−⟨U⟩. Formally, the average velocity at the
point p from all nm measurements of the instantaneous velo-
city at points mi is computed as

⟨U⟩(p) =
∑nm

i=1wp (mi)U(mi, t)∑nm
i=1wp (mi)

. (C.2)

In practice measurements outside of the bin are discarded
and the average is computed over the remaining samples. The
weighting only depends on the distance from the measurement
point and all times are treated equally. Once the mean velocity
is determined then the Reynolds stress tensor can be calculated
by subtracting the mean velocity from all measurements in the
bin and averaging according to equation (C.2).

The statistics presented in figure 8 are computed for 18 log-
arithmically spaced from 10−0.5 m to 100.4 m. Decay constants
are the same at all points with cx = cy = 0.9 and cz = 0.1. The
horizontal bin widths are δx = δy = 8m. Vertical bin widths
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are set so that the bottom bin surface is at the same height as
the point below. That is, labeling the measurement points by
increasing height above the surface, δiz = zi − zi−1. The first
point has δ1z = z1. The bin spacing and size were set so that
the minimum number of samples contributing to each bin is
approximately 105. The actual minimum number of samples
is 0.93× 105 and the average is 7.4× 105.
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