

Developing a Photoelastic Sensor to Measure Skin Friction in Turbulent Boundary Layers

77th Annual Meeting of the APS Division of Fluid Dynamics

University of Utah Dept of Mechanical Engineering

Authors: Alexander Tschinkel, Dhiraj Kumar Singh, Eric Pardyjak, Agastya Balantrapu November 26, 2024

Overview

Why measure wall shear stress in turbulent flows?

- Contributes significantly to both drag and noise^a
- Skin friction can be used to solve for flow characteristics in full-scale *in-situ* tests
- Turbulence causes variance in both space and time What is the challenge? Shear stresses are small:

$$\tau = \mu \frac{dU}{dz} \leftarrow \delta \approx \frac{.37x}{Re^{1/5}} \text{ and } \frac{dU}{dz} \approx \frac{U_{\infty}}{\delta}$$
(1)

For water at 1 m/s, $\tau_{avg} \approx 0.01$ Pa. Given fluctuations around 30%^b, we need a resolution of ±0.003 Pa

^aPerlin, Dowling, and Ceccio 2016. ^bKeirsbulck, Labraga, and Gad-el-Hak 2012.

Current Limitations

Available techniques for evaluating shear stress:1

Technique	Pros	Cons
Oil Film Interferometry	Accurate ±1%	No Spatial Resolution
Floating Element ^{2,3,4}	Direct Measurement	Internal Frequency Response
Particle Tracking (PIV,MTV)	Resolved Δx , Δt	Indirect, Limited to Low Re

(a) Oil Film Interferometry

(b) Floating Element

(c) PIV

イロト イロト イヨト イヨ

¹Öıtu[°] and Vinuesa 2020.
²Baars et al. 2016.
³McLaughlin, Lawson, and Ganapathisubramani 2023.
⁴Meritt et al. 2017.

What is Photoelasticity?

Why Photoelasticity?

- Demonstrated Spatial Resolution⁵
- Demonstrated Sensitivity^{6,7}
- Demonstrated Potential⁸

Figure: Loading Under Foot Induced Stress

⁵Dubey and Grewal 2010. ⁶Mukashev et al. 2022. ⁷Mitsuzuka et al. 2021. ⁸mclaughlin'measuring'2024.

Constraining Factors

Figure: Windows where the Photoelastic Effect can be observed for λ = 520 nm

- Demonstrate Proof of Concept
- Quantify Photoelastic Response
- Perform Measurements for Known Experimental Flows
- 4 Demonstrate In-Situ Measurements

There are several control variables that dictate the performance of a sensor:

Material

- Young's Modulus (E)
- Photoelastic Constant (C)
- Thickness of Sensor (t)
- Transmission vs Reflection

Figure: Experimental Optics

- Confirm that signal amplification is observed for reflection photoelasticity
- Establish a database of photoelastic material parameters
- Confirm resolution of stress components using static loading
- Perform shear stress measurements for laminar flow
- Perform shear stress measurements for turbulent water channel flow
- Perform *in-situ* experimental measurements of atmospheric or vehicular flows